Eubacteria show their true colors: genetics of carotenoid pigment biosynthesis from microbes to plants.

نویسنده

  • G A Armstrong
چکیده

The opportunities to understand eubacterial carotenoid biosynthesis and apply the lessons learned in this field to eukaryotes have improved dramatically in the last several years. On the other hand, many questions remain. Although the pigments illustrated in Fig. 2 represent only a small fraction of the carotenoids found in nature, the characterization of eubacterial genes required for their biosynthesis has not yet been completed. Identifying those eukaryotic carotenoid biosynthetic mutants, genes, and enzymes that have no eubacterial counterparts will also prove essential for a full description of the biochemical pathways (81). Eubacterial crt gene regulation has not been studied in detail, with the notable exceptions of M. xanthus and R. capsulatus (5, 33, 39, 45, 46, 84). Determination of the rate-limiting reaction(s) in carotenoid biosynthesis has thus far yielded species-specific results (12, 27, 47, 69), and the mechanisms of many of the biochemical conversions remain obscure. Predicted characteristics of some carotenoid biosynthesis gene products await confirmation by studying the purified proteins. Despite these challenges, (over)expression of eubacterial or eukaryotic carotenoid genes in heterologous hosts has already created exciting possibilities for the directed manipulation of carotenoid levels and content. Such efforts could, for example, enhance the nutritional value of crop plants or yield microbial production of novel and desirable pigments. In the future, the functional compatibility of enzymes from different organisms will form a central theme in the genetic engineering of carotenoid pigment biosynthetic pathways.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tomato fruit carotenoid biosynthesis is adjusted to actual ripening progression by a light-dependent mechanism.

Carotenoids are isoprenoid compounds that are essential for plants to protect the photosynthetic apparatus against excess light. They also function as health-promoting natural pigments that provide colors to ripe fruit, promoting seed dispersal by animals. Work in Arabidopsis thaliana unveiled that transcription factors of the phytochrome-interacting factor (PIF) family regulate carotenoid gene...

متن کامل

Biochemistry and Molecular Biology of Carotenoid Biosynthesis in Chili Peppers (Capsicum spp.)

Capsicum species produce fruits that synthesize and accumulate carotenoid pigments, which are responsible for the fruits' yellow, orange and red colors. Chili peppers have been used as an experimental model for studying the biochemical and molecular aspects of carotenoid biosynthesis. Most reports refer to the characterization of carotenoids and content determination in chili pepper fruits from...

متن کامل

An R2R3-MYB transcription factor regulates carotenoid pigmentation in Mimulus lewisii flowers.

Carotenoids are yellow, orange, and red pigments that contribute to the beautiful colors and nutritive value of many flowers and fruits. The structural genes in the highly conserved carotenoid biosynthetic pathway have been well characterized in multiple plant systems, but little is known about the transcription factors that control the expression of these structural genes. By analyzing a chemi...

متن کامل

Carotenoid expression in nonphotosynthetic bacteria isolated from Sippewissett marsh soil

Carotenoids comprise a major class of pigment molecules with a broad natural distribution from bacteria to higher plants. In this project I tried to examine carotenoid production in six nonphotosynthetic bacteria isolated from Sippewissett marsh soil. Pigment extraction and spectrophotometer analysis showed that these isolates contain, carotenoid pigments. The pigments of five of these strains ...

متن کامل

Regulation of Carotenoid Biosynthesis by Shade Relies on Specific Subsets of Antagonistic Transcription Factors and Cofactors.

Carotenoids are photosynthetic pigments essential for the protection against excess light. During deetiolation, their production is regulated by a dynamic repression-activation module formed by PHYTOCHROME-INTERACTING FACTOR1 (PIF1) and LONG HYPOCOTYL5 (HY5). These transcription factors directly and oppositely control the expression of the gene encoding PHYTOENE SYNTHASE (PSY), the first and ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 176 16  شماره 

صفحات  -

تاریخ انتشار 1994